Mechanical reasoning, working memory and processing speed

Authors

  • Irene Injoque-Ricle Departamento de Procesos Básicos, Instituto de Investigaciones, Facultad de Psicología, Universidad de Buenos Aires, Argentina http://orcid.org/0000-0002-7043-677X
  • Jésica Formoso Departamento de Procesos Básicos, Instituto de Investigaciones, Facultad de Psicología, Universidad de Buenos Aires, Argentina http://orcid.org/0000-0003-3062-4036
  • Alejandra Calero Departamento de Procesos Básicos, Instituto de Investigaciones, Facultad de Psicología, Universidad de Buenos Aires, Argentina http://orcid.org/0000-0001-7197-1320
  • Guido Caruso Departamento de Procesos Básicos, Instituto de Investigaciones, Facultad de Psicología, Universidad de Buenos Aires, Argentina http://orcid.org/0000-0002-8591-6215
  • Andrea Álvarez Drexler Departamento de Procesos Básicos, Instituto de Investigaciones, Facultad de Psicología, Universidad de Buenos Aires, Argentina
  • Juan Pablo Barreyro Departamento de Procesos Básicos, Instituto de Investigaciones, Facultad de Psicología, Universidad de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina http://orcid.org/0000-0002-1606-1049

DOI:

https://doi.org/10.24265/liberabit.2019.v25n1.06

Keywords:

mechanical reasoning, working memory, short-term memory, processing speed

Abstract

Background: Mechanical reasoning (MR) is the ability to identify the components of a system and understand how they interact in order for the system to work. Different mechanical systems, such as those of wheels and gears, require different types of reasoning. Objective: This study seeks to analyze the relationship that working memory (WM) and processing speed (PS) have with MR. Method: One hundred seventy-three (173) university students were assessed through the DAT test which consisted of 30 MR problems, the symbol search subtest of the WAIS-III battery for assessing the PS, and the BIMET-V and BIMET-VE batteries to evaluate the WM verbal and visuospatial components. Results: Regression analyses showed that the proposed variables do not predict the performance in gear problems, while the visuospatial WM and the PS predict the performance in wheel problems. Discussion: The results suggest that gear problems have a low executive demand as they can be solved in a fractional way, while wheel problems require to hold in memory all the components that are part of the system and, at the same time, require a higher attentional load.

Downloads

Download data is not yet available.

References

An, Y., Feng, L., Zhang, X., Wang, Y., Wang, Y., Tao, L., ... & Xiao, R. (2018). Patterns of cognitive function in middle-aged and elderly Chinese adults- findings from the EMCOA study. Alzheimer’s Research & Therapy, 10(1), 93. doi: 10.1186/s13195-018-0421-8

Ackerman, P. L. (2014). Nonsense, common sense, and science of expert performance: Talent and individual differences. Intelligence, 45, 6-17. doi: 10.1016/j.intell.2013.04.009

Andersen, L. (2014). Visual-Spatial Ability: Important in STEM, Ignored in Gifted Education. Roeper Review, 36(2), 114-121. doi: 10.1080/02783193.2014.884198

Arribas, D., Santamaría, P., Sánchez-Sánchez, F., & Fernández-Pinto, I. (2013). Batería para la evaluación de las aptitudes, BAT. Madrid, ES: TEA Editores.

Baddeley, A. D. (2010). Working memory. Current Biology, 20(4), 136-140. doi: 10.1016/ j.cub.2009.12.014

Baddeley, A. D. (2018). Exploring Working Memory: Selected Works of Alan Baddeley. Abingdon, UK: Routledge.

Baddeley, A. D., & Hitch, G. J. (1974). Working memory. In G. H. Bower (Ed.), The Psychology of Learning and Motivation: Advances in Research and Theory (Vol. 8, pp. 47-90). New York, NY: Academic Press.

Barreyro, J. P., Injoque-Ricle, I., Formoso, J., & Burin, D. (2019). Computerized Working Memory Battery (BIMeT-V): Studying the Relation between Working Memory, Verbal Reasoning and Reading Comprehension. Trends in Psychology. 27(I), 53-67. doi: 10.9788\tp2019.1-05

Bennett, G. K., Seashore, H. G., & Wesman, A. G. (1992). Tests de Aptitudes Diferenciales. Buenos Aires: Paidós.

Conway, A. R. A., Cowan, N., Bunting, M. F., Therriault, D. J., & Minkoff, S. R. B. (2002). A latent variable analysis of working memory capacity, short-term memory capacity, processing speed, and general fluid intelligence. Intelligence, 30(2), 163-183. doi: 10.1016/S0160-2896(01)00096-4

Corsi, P. M. (1972). Human memory and the medial temporal region of the brain. Montreal: McGill University Press.

Demetriou, A., Spanoudis, G., Shayer, M., Ven, S. van der, Brydges, C. R., Kroesbergen, E., ... & Swanson, H. L. (2014). Relations between speed, working memory, and intelligence from preschool to adulthood: Structural equation modeling of 14 studies. Intelligence, 46, 107-121. doi: 10.1016/ j.intell.2014.05.013

Engelhardt, L. E., Mann, F. D., Briley, D. A., Church, J. A., Harden, K. P., & Tucker-Drob, E. M. (2016). Strong genetic overlap between executive functions and intelligence. Journal of Experimental Psychology: General, 145(9), 1141-1159. doi: 10.1037/xge0000195

English, L. D. (2016). STEM education K-12: perspectives on integration. International Journal of STEM Education, 3(1), 3. doi: 10.1186/s40594-016-0036-1

Formoso, J., Jacubovich, S., Injoque-Ricle, I., & Barreyro, J. P. (2018). Resolution of arithmetic problems, processing speed and working memory in children. Trends in Psichology, 26(3), 1249-1266. doi: 10.9788/TP2018.3-05en

Fry, A. F., & Hale, S. (2000). Relationships among processing speed, working memory, and fluid intelligence in children. Biological psychology, 54(1- 3), 1-34. doi: 10.1016/S0301-0511(00)00051-X

Hegarty, M. (2004). Mechanical reasoning by mental simulation. Trends in Cognitive Sciences, 8(6), 280- 285. doi: 10.1016/s1364-6613(04)00100-7

Hegarty, M. (2010). Components of Spatial Intelligence. In B. H. Ross (Ed.), The psychology of learning and motivation (Vol. 52, pp. 265–297). San Diego, CA: Academic Press. doi: 10.1016/S0079-7421(10) 52007-3

Hegarty, M., & Kozhevnikov, M. (1999). Spatial abilities, working memory and mechanical reasoning. In J. S. Gero & B. Tversky (Eds.), Visual and spatial reasoning in design, Sydney, AU: Key Center for Design Computing and Cognition, University of Sydney.

Hegarty, M., & Sims, V. K. (1994). Individual differences in mental animation during mechanical reasoning. Memory & Cognition, 22(4), 411-430. doi: 10.3758/bf03200867

Hegarty, M., & Steinhoff, K. (1997). Individual differences in use of diagrams as external memory in mechanical reasoning. Learning and Individual Differences, 9(1), 19-42. doi: 10.1016/s1041- 6080(97)90018-2

Hegarty, M., & Tarampi, M. R. (2015). Teaching Spatial Thinking: Perspectives from Cognitive Psychology.Teaching Spatial Thinking from Interdisciplinary Perspectives, New México. Recuperado de http://ceur-ws.org/Vol-1557/paper8.pdf

Injoque-Ricle, I., Barreyro, J. P., Formoso, J., & Burin, D. (2018). Working memory, processing speed and general intelligence: Possible models of relations with visuospatial working memory using the visuospatial Computerized Working Memory Battery (BIMeT-VE). Trends in Psychology, 26(1), 413-427. doi: 10.9788/tp2018.1-16

Jensen, A. R. (2006). Clocking the mind: Mental chronometer individual differences. Oxford, UK: Elsevier.

Kelley, T. R., & Knowles, J. G. (2016). A conceptual framework for integrated STEM education. International Journal of STEM Education, 3(1), 11. doi: 10.1186/s40594-016-0046-z

Liu, A. S., & Schunn, C. D. (2017). Applying math onto mechanisms: Mechanistic knowledge is associated with the use of formal mathematical strategies. Cognitive Research: Principles and Implications, 2(1), 6. doi: 10.1186/s41235-016-0044-1

Mella, N., Fagot, D., Lecerf, T., & Ribaupierre, A. de (2015). Working memory and intraindividual variability in processing speed: A lifespan developmental and individual-differences study. Memory & cognition, 43(3), 340-356. doi: 10.3758/ s13421-014-0491-1

Rouse, W. B., & Morris, N. M. (1986). On looking into the black box: Prospects and limits in the search for mental models. Psychological bulletin, 100(3), 349- 363. doi: 10.1037/0033-2909.100.3.349

Sheppard, L. D., & Vernon, P. A. (2008). Intelligence and speed of information-processing: A review of 50 years of research. Personality and Individual Differences, 44(3), 535-551. doi: 10.1016/ j.paid.2007.09.015

Stieff, M., & Uttal, D. H. (2015). How Much Can Spatial Training Improve STEM Achievement? Educational Psychology Review, 27(4), 607-615. doi: 10.1007/s10648-015-9304-8

Wai, J., & Kell, H. J. (2017). What Innovations Have We Already Lost?: The Importance of Identifying and Developing Spatial Talent. In M. Khine (Eds), Visual- spatial Ability in STEM Education (pp. 109-124). Springer, Cham. doi: 10.1007/978-3-319-44385-0_6

Wechsler, D. (2003). WAIS III: Test de Inteligencia para Adultos. Buenos Aires, AR: Paidós.

Williams, M. D., Hollan, J. D., & Stevens, A. L. (1983). Human reasoning about a simple physical system. Mental models. In D, Gentner & A. L., Stevens (Eds), Mental models (pp. 131-154). New York, NY: Psychology Press.

Published

2019-06-24

Issue

Section

Brief Original

How to Cite

Mechanical reasoning, working memory and processing speed. (2019). LIBERABIT. Revista Peruana De Psicología, 25(1), 71-84. https://doi.org/10.24265/liberabit.2019.v25n1.06

Similar Articles

1-10 of 196

You may also start an advanced similarity search for this article.