Raciocínio mecânico, memória de trabalho e velocidade de processamento

Autores

  • Irene Injoque-Ricle Departamento de Procesos Básicos, Instituto de Investigaciones, Facultad de Psicología, Universidad de Buenos Aires, Argentina http://orcid.org/0000-0002-7043-677X
  • Jésica Formoso Departamento de Procesos Básicos, Instituto de Investigaciones, Facultad de Psicología, Universidad de Buenos Aires, Argentina http://orcid.org/0000-0003-3062-4036
  • Alejandra Calero Departamento de Procesos Básicos, Instituto de Investigaciones, Facultad de Psicología, Universidad de Buenos Aires, Argentina http://orcid.org/0000-0001-7197-1320
  • Guido Caruso Departamento de Procesos Básicos, Instituto de Investigaciones, Facultad de Psicología, Universidad de Buenos Aires, Argentina http://orcid.org/0000-0002-8591-6215
  • Andrea Álvarez Drexler Departamento de Procesos Básicos, Instituto de Investigaciones, Facultad de Psicología, Universidad de Buenos Aires, Argentina
  • Juan Pablo Barreyro Departamento de Procesos Básicos, Instituto de Investigaciones, Facultad de Psicología, Universidad de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina http://orcid.org/0000-0002-1606-1049

DOI:

https://doi.org/10.24265/liberabit.2019.v25n1.06

Palavras-chave:

raciocínio mecânico, memória de trabalho, memória de curto prazo, velocidade de processamento

Resumo

Antecedentes: O raciocínio mecânico (RM) é a capacidade de identificar os componentes de um sistema e entender como eles interagem para que o sistema funcione. Diferentes sistemas mecânicos, como roda e engrenagem, exigem diferentes tipos de raciocínio. Objetivo: Este trabalho busca analisar a relação do MT e a velocidade de processamento (VP) com o RM. Método: Para este fim, 173 estudantes universitários receberam 30 problemas de RM do teste DAT, o subteste WAIS-III Battery Symbol Search para avaliar VP e as baterias BIMET-V e BIMET-VE para avaliar os componentes verbais. e visuoespacial do MT. Resultados: As análises de regressão mostraram que as variáveis ​​propostas não predizem o desempenho em problemas de engrenagem, enquanto a viso-espacial MT e a VP predizem o desempenho em problemas de roda. Discussão: Os resultados sugerem que os problemas de engrenagem têm uma demanda executiva baixa para poder ser resolvidos de forma fracionada, enquanto os problemas de roda exigem manter na memória todos os componentes que fazem parte do sistema, enquanto exigem maior carga atencional.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

An, Y., Feng, L., Zhang, X., Wang, Y., Wang, Y., Tao, L., ... & Xiao, R. (2018). Patterns of cognitive function in middle-aged and elderly Chinese adults- findings from the EMCOA study. Alzheimer’s Research & Therapy, 10(1), 93. doi: 10.1186/s13195-018-0421-8

Ackerman, P. L. (2014). Nonsense, common sense, and science of expert performance: Talent and individual differences. Intelligence, 45, 6-17. doi: 10.1016/j.intell.2013.04.009

Andersen, L. (2014). Visual-Spatial Ability: Important in STEM, Ignored in Gifted Education. Roeper Review, 36(2), 114-121. doi: 10.1080/02783193.2014.884198

Arribas, D., Santamaría, P., Sánchez-Sánchez, F., & Fernández-Pinto, I. (2013). Batería para la evaluación de las aptitudes, BAT. Madrid, ES: TEA Editores.

Baddeley, A. D. (2010). Working memory. Current Biology, 20(4), 136-140. doi: 10.1016/ j.cub.2009.12.014

Baddeley, A. D. (2018). Exploring Working Memory: Selected Works of Alan Baddeley. Abingdon, UK: Routledge.

Baddeley, A. D., & Hitch, G. J. (1974). Working memory. In G. H. Bower (Ed.), The Psychology of Learning and Motivation: Advances in Research and Theory (Vol. 8, pp. 47-90). New York, NY: Academic Press.

Barreyro, J. P., Injoque-Ricle, I., Formoso, J., & Burin, D. (2019). Computerized Working Memory Battery (BIMeT-V): Studying the Relation between Working Memory, Verbal Reasoning and Reading Comprehension. Trends in Psychology. 27(I), 53-67. doi: 10.9788\tp2019.1-05

Bennett, G. K., Seashore, H. G., & Wesman, A. G. (1992). Tests de Aptitudes Diferenciales. Buenos Aires: Paidós.

Conway, A. R. A., Cowan, N., Bunting, M. F., Therriault, D. J., & Minkoff, S. R. B. (2002). A latent variable analysis of working memory capacity, short-term memory capacity, processing speed, and general fluid intelligence. Intelligence, 30(2), 163-183. doi: 10.1016/S0160-2896(01)00096-4

Corsi, P. M. (1972). Human memory and the medial temporal region of the brain. Montreal: McGill University Press.

Demetriou, A., Spanoudis, G., Shayer, M., Ven, S. van der, Brydges, C. R., Kroesbergen, E., ... & Swanson, H. L. (2014). Relations between speed, working memory, and intelligence from preschool to adulthood: Structural equation modeling of 14 studies. Intelligence, 46, 107-121. doi: 10.1016/ j.intell.2014.05.013

Engelhardt, L. E., Mann, F. D., Briley, D. A., Church, J. A., Harden, K. P., & Tucker-Drob, E. M. (2016). Strong genetic overlap between executive functions and intelligence. Journal of Experimental Psychology: General, 145(9), 1141-1159. doi: 10.1037/xge0000195

English, L. D. (2016). STEM education K-12: perspectives on integration. International Journal of STEM Education, 3(1), 3. doi: 10.1186/s40594-016-0036-1

Formoso, J., Jacubovich, S., Injoque-Ricle, I., & Barreyro, J. P. (2018). Resolution of arithmetic problems, processing speed and working memory in children. Trends in Psichology, 26(3), 1249-1266. doi: 10.9788/TP2018.3-05en

Fry, A. F., & Hale, S. (2000). Relationships among processing speed, working memory, and fluid intelligence in children. Biological psychology, 54(1- 3), 1-34. doi: 10.1016/S0301-0511(00)00051-X

Hegarty, M. (2004). Mechanical reasoning by mental simulation. Trends in Cognitive Sciences, 8(6), 280- 285. doi: 10.1016/s1364-6613(04)00100-7

Hegarty, M. (2010). Components of Spatial Intelligence. In B. H. Ross (Ed.), The psychology of learning and motivation (Vol. 52, pp. 265–297). San Diego, CA: Academic Press. doi: 10.1016/S0079-7421(10) 52007-3

Hegarty, M., & Kozhevnikov, M. (1999). Spatial abilities, working memory and mechanical reasoning. In J. S. Gero & B. Tversky (Eds.), Visual and spatial reasoning in design, Sydney, AU: Key Center for Design Computing and Cognition, University of Sydney.

Hegarty, M., & Sims, V. K. (1994). Individual differences in mental animation during mechanical reasoning. Memory & Cognition, 22(4), 411-430. doi: 10.3758/bf03200867

Hegarty, M., & Steinhoff, K. (1997). Individual differences in use of diagrams as external memory in mechanical reasoning. Learning and Individual Differences, 9(1), 19-42. doi: 10.1016/s1041- 6080(97)90018-2

Hegarty, M., & Tarampi, M. R. (2015). Teaching Spatial Thinking: Perspectives from Cognitive Psychology.Teaching Spatial Thinking from Interdisciplinary Perspectives, New México. Recuperado de http://ceur-ws.org/Vol-1557/paper8.pdf

Injoque-Ricle, I., Barreyro, J. P., Formoso, J., & Burin, D. (2018). Working memory, processing speed and general intelligence: Possible models of relations with visuospatial working memory using the visuospatial Computerized Working Memory Battery (BIMeT-VE). Trends in Psychology, 26(1), 413-427. doi: 10.9788/tp2018.1-16

Jensen, A. R. (2006). Clocking the mind: Mental chronometer individual differences. Oxford, UK: Elsevier.

Kelley, T. R., & Knowles, J. G. (2016). A conceptual framework for integrated STEM education. International Journal of STEM Education, 3(1), 11. doi: 10.1186/s40594-016-0046-z

Liu, A. S., & Schunn, C. D. (2017). Applying math onto mechanisms: Mechanistic knowledge is associated with the use of formal mathematical strategies. Cognitive Research: Principles and Implications, 2(1), 6. doi: 10.1186/s41235-016-0044-1

Mella, N., Fagot, D., Lecerf, T., & Ribaupierre, A. de (2015). Working memory and intraindividual variability in processing speed: A lifespan developmental and individual-differences study. Memory & cognition, 43(3), 340-356. doi: 10.3758/ s13421-014-0491-1

Rouse, W. B., & Morris, N. M. (1986). On looking into the black box: Prospects and limits in the search for mental models. Psychological bulletin, 100(3), 349- 363. doi: 10.1037/0033-2909.100.3.349

Sheppard, L. D., & Vernon, P. A. (2008). Intelligence and speed of information-processing: A review of 50 years of research. Personality and Individual Differences, 44(3), 535-551. doi: 10.1016/ j.paid.2007.09.015

Stieff, M., & Uttal, D. H. (2015). How Much Can Spatial Training Improve STEM Achievement? Educational Psychology Review, 27(4), 607-615. doi: 10.1007/s10648-015-9304-8

Wai, J., & Kell, H. J. (2017). What Innovations Have We Already Lost?: The Importance of Identifying and Developing Spatial Talent. In M. Khine (Eds), Visual- spatial Ability in STEM Education (pp. 109-124). Springer, Cham. doi: 10.1007/978-3-319-44385-0_6

Wechsler, D. (2003). WAIS III: Test de Inteligencia para Adultos. Buenos Aires, AR: Paidós.

Williams, M. D., Hollan, J. D., & Stevens, A. L. (1983). Human reasoning about a simple physical system. Mental models. In D, Gentner & A. L., Stevens (Eds), Mental models (pp. 131-154). New York, NY: Psychology Press.

Publicado

2019-06-24

Edição

Seção

Brief Original

Como Citar

Raciocínio mecânico, memória de trabalho e velocidade de processamento. (2019). LIBERABIT. Revista Peruana De Psicología, 25(1), 71-84. https://doi.org/10.24265/liberabit.2019.v25n1.06

Artigos Semelhantes

1-10 de 196

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.