Adaptation of the Marihuana Subscale of the Drug Use Resistance Self-Efficacy (DURSE) Scale in Adolescents
DOI:
https://doi.org/10.24265/liberabit.2021.v27n2.02Keywords:
self-efficacy, drugs, marijuana, adolescentsAbstract
Background: self-efficacy is an important factor in drug use and there is a need for adapting psychological measuring instruments to the Peruvian context. The Drug Use Resistance Self-Efficacy (DURSE) scale (Carpenter, 2006) is a useful instrument for measuring this construct across different social situations. Objectives: to assess the psychometric properties of validity and reliability of the DURSE marijuana subscale among public school students from Lima. Method: the scale was translated and subjected to a pilot study consisting of 83 adolescents. The final version was administered to a sample of 1015 high school students. Results: the confirmatory factor analysis showed a one-factor structure with good fit indices (CFI = .990, TLI = .986, RMSEA = .057, SRMR = .015) and a high reliability coefficient (.98). The invariance was analyzed considering the participants’ sex, thus finding scalar but not metric invariance. Higher levels of selfefficacy were found among students who had not used marijuana, had no intention of trying it and refused marijuana offers. Conclusions: the DURSE marijuana subscale is a suitable instrument to measure marijuana use resistance self-efficacy among adolescents from Lima.
Authorship contribution
DPOC: study design, data analysis, preparation of the discussion and final revision of the manuscript. manuscript.
CCPA: conception, design and supervision of the study, review of the discussion and conclusions.
FOC: study design, review of data analysis, final revision of the manuscript.
SMRS: study design, supervision of methodological procedures and invariance analysis.
Downloads
References
Bandura, A. (2001). Social cognitive theory: an agentic perspective. Annual Review of Psychology, 52(1), 1-26. DOI: 10.1146/annurev.psych.52.1.1
Bandura, A. (2006). Guide for constructing self-efficacy scales. En Urdan & Pajares (Eds.) Self Efficacy Beliefs of Adolescents. Boulder, CO, USA: University of Colorado School of Education.
Byrne, B. (2010). Structural equation modeling with AMOS: basic concepts, applications, and programming. (2nd Ed). London, UK: Taylor & Francis
Carpenter, C. (2006). Development of a Scale to Measure Adolescent’s Drug Use Resistance Self-Efficacy. (Doctoral Dissertation). Recuperado de Digital Repository at the University of Maryland (http://hdl.handle.net/1903/3498)
Carpenter, C., & Howard, D. (2009). Development a Drug Use Resistance Self-efficacy (DURSE) Scale. American Journal of Health Behavior, 33(2), 147-157. DOI: http://dx.doi.org/10.5993/AJHB.33.2.4
Centro de Información y Educación para la Prevención del Abuso de Drogas (CEDRO) (2017). Epidemiología de Drogas en Población Urbana Peruana: Encuesta en Hogares. Recuperado de http://repositorio.cedro.org.pe/bitstream/CEDRO/361/3/CEDRO.Estudio%20EPI.2017.pdf
Centro de Información y Educación para la Prevención del Abuso de Drogas (CEDRO) (2018). El Problema de las Drogas en el Perú. Recuperado de http://www.repositorio.cedro.org.pe/bitstream/CEDRO/378/1/CEDRO.Problema%20de%20las%20drogas.2018.pdf
Choi, H., Krieger, J., & Hecht, M. (2013). Reconceptualizing Efficacy in Substance Use Prevention Research: Refusal Response Efficacy and Drug Resistance Self-Efficacy in Adolescent Substance Use. Health Communication, 28(1), 40-52. DOI: 10.1080/10410236.2012.720245
Chung, T., & Maisto, S. (2016). Time-varying associations between confidence and motivation to abstain from marijuana during treatment among adolescents. Addictive Behaviors, 57, 62-68. DOI: https://doi.org/10.1016/j.addbeh.2016.02.015
Clare, N., Vogl, L., Teeson, M., & Andrews, G. (2011). Developing the Climate Schools: Alcohol and Cannabis Module: A Harm-Minimization, Universal Drug Prevention Program Facilitated by the Internet. Substance Use & Misuse, 46, 1651-1663. DOI: 10.3109/10826084.2011.613441
Cohen, J. (1992). A power primer. Psychological bulletin, 112(1), 155-159.
Comisión Nacional para el Desarrollo y Vida sin Drogas (DEVIDA) (2014a). Consumo Problemático de Marihuana en la Población Escolar de Secundaria (Validación de la Escala CAST Cannabis Abuse Screening Test). Recuperado de https://www.devida.gob.pe/documents/20182/97343/consumo-problematico-marihuana-Peru.pdf/b90f52be-8950-4678-afed-cc97f8c7b477
Comisión Nacional para el Desarrollo y Vida sin Drogas (DEVIDA) (2014b). Manual Para la Prevención del Consumo de Drogas. Proyecto de Descentralización de Políticas de Drogas en Países Andinos PERÚ. Recuperado de https://www.devida.gob.pe/documents/20182/97343/Manual-para-la-prevenci%C3%B3n-del-consumo-de-drogas.pdf/6bbbfe1b-b23f-4796-8c24-5c73583be8ff
D’Amico, E., Rodriguez, A., Tucker, J., Dunbar, M., Pedersen, E. Shih, R., Davis, J. & Seelam, R. (2020) Early and Late Adolescent Factors that Predict Co-use of Cannabis with Alcohol and Tobacco in Young Adulthood. Prevention Science, 21, 530-544. DOI: https://doi.org/10.1007/s11121-020-01086-7
Etchemendi, M.C, Rodríguez, M. & Valenzuela (2019) Adaptación y validación de la escala de autoeficiencia para la evitación de drogas (DASES-The Drug Avoidance Self-Efficacy Scale) [Tesis de pregrado, Universidad Nacional de Mar del Plata]. Repositorio RPsico http://rpsico.mdp.edu.ar/handle/123456789/1151
Gullo, M., Matveeva, M., Feeney, G., Young, R., & Connor, J. (2017). Social cognitive predictors of treatment outcome in cannabis dependence. Drug and Alcohol Dependence, 170, 74-81. DOI: 10.1016/j.drugalcdep.2016.10.030.
Guzmán, F. Llamas, M. Rodríguez, L., & Alonso, M. (2012). Norma subjetiva, intención y consumo de marihuana en jóvenes universitarios de México. Ciencia y Enfermería, 18(1), 57-66. DOI: 10.4067/S0717-95532012000100006
Henze, N. & Zirkler, B. (1990). A class of invariant consistent tests for multivariate normality. Communications in Statistics - Theory and Methods, 19, 3595-3617.
Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6, 1–55.
Lenhard, W. & Lenhard, A. (2016). Calculation of Effect Sizes. Recuperado de https://www.psychometrica.de/effect_size.html.
Lopez-Quintero, C. & Neumark, Y. (2015) Prevalence and determinants of resistance to use drugs among adolescents who had an opportunity to use drugs. Drug and Alcohol Dependencies, 1(149) 55-62. DOI: https://dx.doi.org/10.1016%2Fj.drugalcdep.2015.01.015
Naciones Unidas (2019). World Drug Report 2019. Recuperado de https://wdr.unodc.org/wdr2019/index.html
National Health Promotion Associates (2017). Botvin Life Skills ® Training Planning Workbook A Guide for Implementing a LifeSkills Training Program. Recuperado de https://www.lifeskillstraining.com/wp-content/uploads/2017/10/LST-Planning-Workbook.pdf
Nunnally, J., & Bernstein, I. H. (1995). Teoría psicométrica. Ciudad de México, México: McGraw-Hill
Mardia, K. V. (1970). Measures of multivariate skewnees and kurtosis with applications. Biometrika, 57, 519-530.
Martin, G., Wilkinson, D., & Poulos C. (1995) The Drug Avoidance Self-Efficacy Scale. Journal of Substance Abuse, 7(2), 151-163. DOI: 10.1016/0899-3289(95)90001-2
Morell-Gomis, R. Moriano, J., Laguía, A., Dias, P., &Lloret, D. (2019) Adolescents cannabis use intention: Validating a theory of planned behavior questionnaire in four European countries, Journal of Substance Use, 24(1), 66-72. DOI: 10.1080/14659891.2018.1510050
Organización de los Estados Americanos (OEA) (2019). Informe sobre el consumo de drogas en las Américas 2019. Washington, D.C, USA: OEA. Recuperado de http://www.cicad.oas.org/main/pubs/Informe%20sobre%20el%20consumo%20de%20drogas%20en%20las%20Am%C3%A9ricas%202019.pdf
Papinczak, Z., Connor, J., Harnett, P., & Gullo, M. (2018). A biosocial cognitive model of cannabis use in emerging adulthood. Addictive Behaviors, 76, 229-235. DOI: 10.1016/j.addbeh.2017.08.011.
Pearson, M. R., Bravo, A. J., & Protective Strategies Study Team (2019). Marijuana protective behavioral strategies and marijuana refusal self-efficacy: Independent and interactive effects on marijuana-related outcomes. Psychology of Addictive Behaviors, 33(4), 412–419. DOI: 0.1037/adb0000445
Peterson, R. A., & Kim, Y. (2013). On the relationship between coefficient alpha and composite reliability. Journal of Applied Psychology, 98(1), 194-198.
Ramo, D., Myers, M., & Brown, S. (2009). Psychometric Properties of a Revised Form
of the Drug-Taking Confidence Questionnaire for Use with Adolescents. Journal of Child & Adolescent Substance Abuse, 18(1), 24-42. DOI: 10.1080/15470650802541061
Raykov, T. (2004). Point and Interval Estimation of Reliability for Multiple-Component Measuring Instruments via Linear Constraint Covariance Structure Modeling. Structural Equation Modeling, 11, 342-356.
Real Prevention (2019). Core Competencies. Recuperada de https://real-prevention.com/core-competencies/
Satorra, A., & Bentler, P. M. (2001). A scaled difference chi-square test statistic for moment structure analysis. Psychometrika, 66, 507-514.
Sheykhnezhad, F., &Seyedfatemi, N. (2019). Effect of group education on self-efficacy and craving tendencies in drug abusers in 5th Azar Drug Abuse Treatment Center of Gorgan. Cogent Psychology, 6, 1-16. DOI: 10.1080/23311908.2019.1587818
Shrier, L., Sarda, V., Jonestrask, C., & Kim, S. (2018) Momentary factors during marijuana use as predictors of lapse during attempted abstinence in young adults. Addictive Behaviors, 83, 167-174. DOI: 10.1016/j.addbeh.2017.12.032.
Sklar, S. Annis, H., & Turner, N. (1997) Development and validation of the drug-taking confidence questionnaire: a measure of coping self-efficacy. Addictive Behaviors, 22(5), 655-670. DOI: 10.1016/S0306-4603(97)00006-3
University of Southern California Institute for Prevention Research (2019) TND Project Towards No Abuse. Preview. Página web visitada en febrero 2020. Recuperada de https://tnd.usc.edu/?page_id=41
U.S. Department of Health and Human Services (HHS), Office of the Surgeon General (2016). Facing Addiction in America: The Surgeon General’s Report on Alcohol, Drugs, and Health. Washington, DC, USA: HHS. Recuperado de https://addiction.surgeongeneral.gov/sites/default/files/surgeon-generals-report.pdf
Vigo, A (2003) Adaptación psicométrica del cuestionario de confianza ante situaciones de riesgo para consumir en pacientes adictos [Tesis de pregrado, Universidad Nacional Federico Villareal]. Repositorio Institucional UNFV http://repositorio.unfv.edu.pe/handle/UNFV/948
Walton, M., Bohnert, K., Resko, S., Barry, K., Chermack, S., Zucker, R., Zimmerman, M., Booth, B., & Blow, F. (2013) Computer and therapist based brief interventions among cannabis-using adolescents presenting to primary care: one-year outcomes. Drug and Alcohol Dependence, 132(3), 646-653. DOI: 10.1016/j.drugalcdep.2013.04.020
West, S., Finch J., & Curran P. (1995). Structural equation models with nonnormal variables: problems and remedies. En Hoyle (Ed.) Structural equation modeling: Concepts, issues and applications. Thousand Oaks, CA, USA: Sage
Young, R., Gullo, M., Feeney, G., & Connor, J. (2012). Development and validation of the Cannabis Refusal Self-Efficacy Questionnaire (CRSEQ) in adult cannabis users in treatment. Drug and Alcohol Dependence, 125, 244-251. DOI: 10.1016/j.drugalcdep.2012.02.018
Zavaleta, A., Castro de la Mata, R., Maldonado, V., & Romero, E. (2006). Características y opiniones sobre drogas en escolares de cuarto y quinto de secundaria. Encuesta Flash. Lima, Perú: CEDRO.
Zullig, K., & Valois, R. (2017) Perceptions of Harm From Substance Use and Social Self-Efficacy Among Early Adolescents. Journal of Drug Education, 46(3-4), 96-112. DOI: 10.1177/0047237917735043
Zvolensky, M., Paulus, D., Garey, L., Manning, K., Hogan, J., Buckner, J., Rogers, A., & McHugh, K. (2018) Perceived barriers for cannabis cessation: Relations to cannabis use problems, withdrawal symptoms, and self-efficacy for quitting. Addictive Behaviors, 76, 45-51. DOI: 10.1016/j.addbeh.2017.07.011
Downloads
Published
Issue
Section
License
Copyright: In the event that the manuscript is approved for future publication, the authors retain the copyright and assign to the journal the rights to publish, edit, reproduce, distribute, exhibit, and communicate nationally and internationally in the various databases, repositories and portals.
Self-archiving policy: The author can share, disseminate, and publicize his research published by the media (e.g., academic social networks, repositories, and portals) available on the web. During the editorial review process, the journal will provide the author with the previous versions (post-print) which should NOT be disclosed by any media, only for personal use and for final approval. Liberabit will send the author the final version of the article (published version) in PDF and HTML to be shared, disseminated and disclosed by the media available on the web. After the publication of the articles, the authors can make other independent or additional agreements for the non-exclusive dissemination of the version of the article published in this journal (publication in books or institutional repositories), provided that it is indicated with the respective reference that the work has been published for the first time in this journal.